3.1579 \(\int \frac{\sqrt [3]{c+d x}}{(a+b x)^{10/3}} \, dx\)

Optimal. Leaf size=66 \[ \frac{9 d (c+d x)^{4/3}}{28 (a+b x)^{4/3} (b c-a d)^2}-\frac{3 (c+d x)^{4/3}}{7 (a+b x)^{7/3} (b c-a d)} \]

[Out]

(-3*(c + d*x)^(4/3))/(7*(b*c - a*d)*(a + b*x)^(7/3)) + (9*d*(c + d*x)^(4/3))/(28*(b*c - a*d)^2*(a + b*x)^(4/3)
)

________________________________________________________________________________________

Rubi [A]  time = 0.0086674, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {45, 37} \[ \frac{9 d (c+d x)^{4/3}}{28 (a+b x)^{4/3} (b c-a d)^2}-\frac{3 (c+d x)^{4/3}}{7 (a+b x)^{7/3} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(1/3)/(a + b*x)^(10/3),x]

[Out]

(-3*(c + d*x)^(4/3))/(7*(b*c - a*d)*(a + b*x)^(7/3)) + (9*d*(c + d*x)^(4/3))/(28*(b*c - a*d)^2*(a + b*x)^(4/3)
)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{\sqrt [3]{c+d x}}{(a+b x)^{10/3}} \, dx &=-\frac{3 (c+d x)^{4/3}}{7 (b c-a d) (a+b x)^{7/3}}-\frac{(3 d) \int \frac{\sqrt [3]{c+d x}}{(a+b x)^{7/3}} \, dx}{7 (b c-a d)}\\ &=-\frac{3 (c+d x)^{4/3}}{7 (b c-a d) (a+b x)^{7/3}}+\frac{9 d (c+d x)^{4/3}}{28 (b c-a d)^2 (a+b x)^{4/3}}\\ \end{align*}

Mathematica [A]  time = 0.0229644, size = 46, normalized size = 0.7 \[ \frac{3 (c+d x)^{4/3} (7 a d-4 b c+3 b d x)}{28 (a+b x)^{7/3} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(1/3)/(a + b*x)^(10/3),x]

[Out]

(3*(c + d*x)^(4/3)*(-4*b*c + 7*a*d + 3*b*d*x))/(28*(b*c - a*d)^2*(a + b*x)^(7/3))

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 54, normalized size = 0.8 \begin{align*}{\frac{9\,bdx+21\,ad-12\,bc}{28\,{a}^{2}{d}^{2}-56\,abcd+28\,{b}^{2}{c}^{2}} \left ( dx+c \right ) ^{{\frac{4}{3}}} \left ( bx+a \right ) ^{-{\frac{7}{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/3)/(b*x+a)^(10/3),x)

[Out]

3/28*(d*x+c)^(4/3)*(3*b*d*x+7*a*d-4*b*c)/(b*x+a)^(7/3)/(a^2*d^2-2*a*b*c*d+b^2*c^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{1}{3}}}{{\left (b x + a\right )}^{\frac{10}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(10/3),x, algorithm="maxima")

[Out]

integrate((d*x + c)^(1/3)/(b*x + a)^(10/3), x)

________________________________________________________________________________________

Fricas [B]  time = 1.71984, size = 370, normalized size = 5.61 \begin{align*} \frac{3 \,{\left (3 \, b d^{2} x^{2} - 4 \, b c^{2} + 7 \, a c d -{\left (b c d - 7 \, a d^{2}\right )} x\right )}{\left (b x + a\right )}^{\frac{2}{3}}{\left (d x + c\right )}^{\frac{1}{3}}}{28 \,{\left (a^{3} b^{2} c^{2} - 2 \, a^{4} b c d + a^{5} d^{2} +{\left (b^{5} c^{2} - 2 \, a b^{4} c d + a^{2} b^{3} d^{2}\right )} x^{3} + 3 \,{\left (a b^{4} c^{2} - 2 \, a^{2} b^{3} c d + a^{3} b^{2} d^{2}\right )} x^{2} + 3 \,{\left (a^{2} b^{3} c^{2} - 2 \, a^{3} b^{2} c d + a^{4} b d^{2}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(10/3),x, algorithm="fricas")

[Out]

3/28*(3*b*d^2*x^2 - 4*b*c^2 + 7*a*c*d - (b*c*d - 7*a*d^2)*x)*(b*x + a)^(2/3)*(d*x + c)^(1/3)/(a^3*b^2*c^2 - 2*
a^4*b*c*d + a^5*d^2 + (b^5*c^2 - 2*a*b^4*c*d + a^2*b^3*d^2)*x^3 + 3*(a*b^4*c^2 - 2*a^2*b^3*c*d + a^3*b^2*d^2)*
x^2 + 3*(a^2*b^3*c^2 - 2*a^3*b^2*c*d + a^4*b*d^2)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/3)/(b*x+a)**(10/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{1}{3}}}{{\left (b x + a\right )}^{\frac{10}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(10/3),x, algorithm="giac")

[Out]

integrate((d*x + c)^(1/3)/(b*x + a)^(10/3), x)